3.99 \(\int \frac{(a+a \sec (e+f x))^{3/2}}{(c-c \sec (e+f x))^{5/2}} \, dx\)

Optimal. Leaf size=146 \[ \frac{a^2 \tan (e+f x) \log (1-\cos (e+f x))}{c^2 f \sqrt{a \sec (e+f x)+a} \sqrt{c-c \sec (e+f x)}}-\frac{a^2 \tan (e+f x)}{c f \sqrt{a \sec (e+f x)+a} (c-c \sec (e+f x))^{3/2}}-\frac{a^2 \tan (e+f x)}{f \sqrt{a \sec (e+f x)+a} (c-c \sec (e+f x))^{5/2}} \]

[Out]

-((a^2*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]]*(c - c*Sec[e + f*x])^(5/2))) - (a^2*Tan[e + f*x])/(c*f*Sqrt[a
 + a*Sec[e + f*x]]*(c - c*Sec[e + f*x])^(3/2)) + (a^2*Log[1 - Cos[e + f*x]]*Tan[e + f*x])/(c^2*f*Sqrt[a + a*Se
c[e + f*x]]*Sqrt[c - c*Sec[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.282822, antiderivative size = 146, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.133, Rules used = {3908, 3907, 3911, 31} \[ \frac{a^2 \tan (e+f x) \log (1-\cos (e+f x))}{c^2 f \sqrt{a \sec (e+f x)+a} \sqrt{c-c \sec (e+f x)}}-\frac{a^2 \tan (e+f x)}{c f \sqrt{a \sec (e+f x)+a} (c-c \sec (e+f x))^{3/2}}-\frac{a^2 \tan (e+f x)}{f \sqrt{a \sec (e+f x)+a} (c-c \sec (e+f x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[e + f*x])^(3/2)/(c - c*Sec[e + f*x])^(5/2),x]

[Out]

-((a^2*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]]*(c - c*Sec[e + f*x])^(5/2))) - (a^2*Tan[e + f*x])/(c*f*Sqrt[a
 + a*Sec[e + f*x]]*(c - c*Sec[e + f*x])^(3/2)) + (a^2*Log[1 - Cos[e + f*x]]*Tan[e + f*x])/(c^2*f*Sqrt[a + a*Se
c[e + f*x]]*Sqrt[c - c*Sec[e + f*x]])

Rule 3908

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(3/2)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Si
mp[(-4*a^2*Cot[e + f*x]*(c + d*Csc[e + f*x])^n)/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]]), x] + Dist[a/c, Int[Sqr
t[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0
] && EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)]

Rule 3907

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_), x_Symbol] :> Simp[
(-2*a*Cot[e + f*x]*(c + d*Csc[e + f*x])^n)/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]]), x] + Dist[1/c, Int[Sqrt[a +
 b*Csc[e + f*x]]*(c + d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] &&
EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)]

Rule 3911

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_), x_Symbol] :> -Dis
t[(a*c*Cot[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]]), Subst[Int[((b + a*x)^(m - 1/2)*(d
+ c*x)^(n - 1/2))/x^(m + n), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] &&
EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] && EqQ[m + n, 0]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{(a+a \sec (e+f x))^{3/2}}{(c-c \sec (e+f x))^{5/2}} \, dx &=-\frac{a^2 \tan (e+f x)}{f \sqrt{a+a \sec (e+f x)} (c-c \sec (e+f x))^{5/2}}+\frac{a \int \frac{\sqrt{a+a \sec (e+f x)}}{(c-c \sec (e+f x))^{3/2}} \, dx}{c}\\ &=-\frac{a^2 \tan (e+f x)}{f \sqrt{a+a \sec (e+f x)} (c-c \sec (e+f x))^{5/2}}-\frac{a^2 \tan (e+f x)}{c f \sqrt{a+a \sec (e+f x)} (c-c \sec (e+f x))^{3/2}}+\frac{a \int \frac{\sqrt{a+a \sec (e+f x)}}{\sqrt{c-c \sec (e+f x)}} \, dx}{c^2}\\ &=-\frac{a^2 \tan (e+f x)}{f \sqrt{a+a \sec (e+f x)} (c-c \sec (e+f x))^{5/2}}-\frac{a^2 \tan (e+f x)}{c f \sqrt{a+a \sec (e+f x)} (c-c \sec (e+f x))^{3/2}}+\frac{\left (a^2 \tan (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{-c+c x} \, dx,x,\cos (e+f x)\right )}{c f \sqrt{a+a \sec (e+f x)} \sqrt{c-c \sec (e+f x)}}\\ &=-\frac{a^2 \tan (e+f x)}{f \sqrt{a+a \sec (e+f x)} (c-c \sec (e+f x))^{5/2}}-\frac{a^2 \tan (e+f x)}{c f \sqrt{a+a \sec (e+f x)} (c-c \sec (e+f x))^{3/2}}+\frac{a^2 \log (1-\cos (e+f x)) \tan (e+f x)}{c^2 f \sqrt{a+a \sec (e+f x)} \sqrt{c-c \sec (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 1.20968, size = 153, normalized size = 1.05 \[ \frac{a \tan \left (\frac{1}{2} (e+f x)\right ) \sqrt{a (\sec (e+f x)+1)} \left (6 \log \left (1-e^{i (e+f x)}\right )+\left (-8 \log \left (1-e^{i (e+f x)}\right )+4 i f x-6\right ) \cos (e+f x)+\left (2 \log \left (1-e^{i (e+f x)}\right )-i f x\right ) \cos (2 (e+f x))-3 i f x+4\right )}{2 c^2 f (\cos (e+f x)-1)^2 \sqrt{c-c \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[e + f*x])^(3/2)/(c - c*Sec[e + f*x])^(5/2),x]

[Out]

(a*(4 - (3*I)*f*x + Cos[e + f*x]*(-6 + (4*I)*f*x - 8*Log[1 - E^(I*(e + f*x))]) + 6*Log[1 - E^(I*(e + f*x))] +
Cos[2*(e + f*x)]*((-I)*f*x + 2*Log[1 - E^(I*(e + f*x))]))*Sqrt[a*(1 + Sec[e + f*x])]*Tan[(e + f*x)/2])/(2*c^2*
f*(-1 + Cos[e + f*x])^2*Sqrt[c - c*Sec[e + f*x]])

________________________________________________________________________________________

Maple [A]  time = 0.265, size = 227, normalized size = 1.6 \begin{align*} -{\frac{a \left ( -1+\cos \left ( fx+e \right ) \right ) }{4\,f\sin \left ( fx+e \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}} \left ( 8\,\ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}-4\,\ln \left ( 2\, \left ( 1+\cos \left ( fx+e \right ) \right ) ^{-1} \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}-16\,\cos \left ( fx+e \right ) \ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) -5\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}+8\,\cos \left ( fx+e \right ) \ln \left ( 2\, \left ( 1+\cos \left ( fx+e \right ) \right ) ^{-1} \right ) +8\,\ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) -2\,\cos \left ( fx+e \right ) -4\,\ln \left ( 2\, \left ( 1+\cos \left ( fx+e \right ) \right ) ^{-1} \right ) +3 \right ) \sqrt{{\frac{a \left ( 1+\cos \left ( fx+e \right ) \right ) }{\cos \left ( fx+e \right ) }}} \left ({\frac{c \left ( -1+\cos \left ( fx+e \right ) \right ) }{\cos \left ( fx+e \right ) }} \right ) ^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(5/2),x)

[Out]

-1/4/f*a*(-1+cos(f*x+e))*(8*ln(-(-1+cos(f*x+e))/sin(f*x+e))*cos(f*x+e)^2-4*ln(2/(1+cos(f*x+e)))*cos(f*x+e)^2-1
6*cos(f*x+e)*ln(-(-1+cos(f*x+e))/sin(f*x+e))-5*cos(f*x+e)^2+8*cos(f*x+e)*ln(2/(1+cos(f*x+e)))+8*ln(-(-1+cos(f*
x+e))/sin(f*x+e))-2*cos(f*x+e)-4*ln(2/(1+cos(f*x+e)))+3)*(1/cos(f*x+e)*a*(1+cos(f*x+e)))^(1/2)/sin(f*x+e)/cos(
f*x+e)^2/(c*(-1+cos(f*x+e))/cos(f*x+e))^(5/2)

________________________________________________________________________________________

Maxima [B]  time = 2.51214, size = 2411, normalized size = 16.51 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

-((f*x + e)*a*cos(4*f*x + 4*e)^2 + 36*(f*x + e)*a*cos(2*f*x + 2*e)^2 + 16*(f*x + e)*a*cos(3/2*arctan2(sin(2*f*
x + 2*e), cos(2*f*x + 2*e)))^2 + 16*(f*x + e)*a*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + (f*x
+ e)*a*sin(4*f*x + 4*e)^2 + 36*(f*x + e)*a*sin(2*f*x + 2*e)^2 + 16*(f*x + e)*a*sin(3/2*arctan2(sin(2*f*x + 2*e
), cos(2*f*x + 2*e)))^2 + 16*(f*x + e)*a*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 12*(f*x + e)
*a*cos(2*f*x + 2*e) + (f*x + e)*a - 2*(a*cos(4*f*x + 4*e)^2 + 36*a*cos(2*f*x + 2*e)^2 + 16*a*cos(3/2*arctan2(s
in(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 16*a*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + a*sin(4*
f*x + 4*e)^2 + 12*a*sin(4*f*x + 4*e)*sin(2*f*x + 2*e) + 36*a*sin(2*f*x + 2*e)^2 + 16*a*sin(3/2*arctan2(sin(2*f
*x + 2*e), cos(2*f*x + 2*e)))^2 + 16*a*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 2*(6*a*cos(2*f
*x + 2*e) + a)*cos(4*f*x + 4*e) + 12*a*cos(2*f*x + 2*e) - 8*(a*cos(4*f*x + 4*e) + 6*a*cos(2*f*x + 2*e) - 4*a*c
os(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + a)*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))
- 8*(a*cos(4*f*x + 4*e) + 6*a*cos(2*f*x + 2*e) + a)*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 8*(
a*sin(4*f*x + 4*e) + 6*a*sin(2*f*x + 2*e) - 4*a*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))))*sin(3/2*
arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 8*(a*sin(4*f*x + 4*e) + 6*a*sin(2*f*x + 2*e))*sin(1/2*arctan2(s
in(2*f*x + 2*e), cos(2*f*x + 2*e))) + a)*arctan2(sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))), cos(1/2
*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 1) + 2*(6*(f*x + e)*a*cos(2*f*x + 2*e) + (f*x + e)*a - 4*a*sin
(2*f*x + 2*e))*cos(4*f*x + 4*e) - 2*(4*(f*x + e)*a*cos(4*f*x + 4*e) + 24*(f*x + e)*a*cos(2*f*x + 2*e) - 16*(f*
x + e)*a*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 4*(f*x + e)*a + 3*a*sin(4*f*x + 4*e) + 2*a*sin
(2*f*x + 2*e))*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 2*(4*(f*x + e)*a*cos(4*f*x + 4*e) + 24*(
f*x + e)*a*cos(2*f*x + 2*e) + 4*(f*x + e)*a + 3*a*sin(4*f*x + 4*e) + 2*a*sin(2*f*x + 2*e))*cos(1/2*arctan2(sin
(2*f*x + 2*e), cos(2*f*x + 2*e))) + 4*(3*(f*x + e)*a*sin(2*f*x + 2*e) + 2*a*cos(2*f*x + 2*e))*sin(4*f*x + 4*e)
 - 8*a*sin(2*f*x + 2*e) - 2*(4*(f*x + e)*a*sin(4*f*x + 4*e) + 24*(f*x + e)*a*sin(2*f*x + 2*e) - 16*(f*x + e)*a
*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 3*a*cos(4*f*x + 4*e) - 2*a*cos(2*f*x + 2*e) - 3*a)*sin
(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 2*(4*(f*x + e)*a*sin(4*f*x + 4*e) + 24*(f*x + e)*a*sin(2*f
*x + 2*e) - 3*a*cos(4*f*x + 4*e) - 2*a*cos(2*f*x + 2*e) - 3*a)*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2
*e))))*sqrt(a)*sqrt(c)/((c^3*cos(4*f*x + 4*e)^2 + 36*c^3*cos(2*f*x + 2*e)^2 + 16*c^3*cos(3/2*arctan2(sin(2*f*x
 + 2*e), cos(2*f*x + 2*e)))^2 + 16*c^3*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + c^3*sin(4*f*x
+ 4*e)^2 + 12*c^3*sin(4*f*x + 4*e)*sin(2*f*x + 2*e) + 36*c^3*sin(2*f*x + 2*e)^2 + 16*c^3*sin(3/2*arctan2(sin(2
*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 16*c^3*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 12*c^3*cos
(2*f*x + 2*e) + c^3 + 2*(6*c^3*cos(2*f*x + 2*e) + c^3)*cos(4*f*x + 4*e) - 8*(c^3*cos(4*f*x + 4*e) + 6*c^3*cos(
2*f*x + 2*e) - 4*c^3*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + c^3)*cos(3/2*arctan2(sin(2*f*x + 2
*e), cos(2*f*x + 2*e))) - 8*(c^3*cos(4*f*x + 4*e) + 6*c^3*cos(2*f*x + 2*e) + c^3)*cos(1/2*arctan2(sin(2*f*x +
2*e), cos(2*f*x + 2*e))) - 8*(c^3*sin(4*f*x + 4*e) + 6*c^3*sin(2*f*x + 2*e) - 4*c^3*sin(1/2*arctan2(sin(2*f*x
+ 2*e), cos(2*f*x + 2*e))))*sin(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - 8*(c^3*sin(4*f*x + 4*e) + 6
*c^3*sin(2*f*x + 2*e))*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))))*f)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (a \sec \left (f x + e\right ) + a\right )}^{\frac{3}{2}} \sqrt{-c \sec \left (f x + e\right ) + c}}{c^{3} \sec \left (f x + e\right )^{3} - 3 \, c^{3} \sec \left (f x + e\right )^{2} + 3 \, c^{3} \sec \left (f x + e\right ) - c^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

integral(-(a*sec(f*x + e) + a)^(3/2)*sqrt(-c*sec(f*x + e) + c)/(c^3*sec(f*x + e)^3 - 3*c^3*sec(f*x + e)^2 + 3*
c^3*sec(f*x + e) - c^3), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))**(3/2)/(c-c*sec(f*x+e))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(5/2),x, algorithm="giac")

[Out]

Timed out